TU COM:

BLAZHKO RR LYRAE

IN A BINARY SYSTEM??

3^d European Conference for Amateur Variable Star Observers

Pierre de Ponthière

www.dppobservatory.net

TU Com observations

- A group of AAVSO observers
 - Josch Hambsch: New Mexico and Belgium
 - Ken Menzies : Massachusetts
 - Richard Sabo : Montana
 - Pierre de Ponthiere : New Mexico and Belgium
- 150 nights with a time span of 6.5 years
- 23 577 light curve data points

TU Com main features

- RR Lyrae (RRab)
 - Pulsating period 0.4618665 day
- Blazhko effect
 - Periods 43.6 and 45.5 days
 - Maxima amplitude
 - Epoch of maxima (O-C)
- Long period
 - 1676 days
 - only (O-C) is affected
 - Probably in a binary system

Folded light curve on the pulsation period

Light curve maxima analysis

- Times and magnitudes of maxima are measured by curve fitting with a spline (Reinsch algorithm)
- 124 pulsation maxima recorded
 - $\overline{(O-C)} = t_{obs} (t_0 + n P_{pulsation})$
 - Magnitude at maximum
- Linear regression of the (O-C) values
 - Pulsation period of 0.4618665 day

(O-C) and Magnitude at Maximum

- Blazhko effect (45 days) on (O-C) and MagMax
- Periodic modulation (1676 days) of (O-C) is not apparent in the Magnitude diagram

Spectral analysis of Maxima

Period04 : (O-C)

Blazhko period 45.28 d

Long period 1635 d

Period04 : Mmax

Blazhko period 43.37 d

Blazhko period 45.36 d

The long period is not apparent

Long period a sign of binary system

 Light-travel time effect in a binary system

variation in O-C and not in Magnitude at maximum

Very few detected RR Lyrae in binary system

- Last century TU UMa was the only one.
- Today, 12 in galactic bulge and some others as potential in the galactic field.
- All those RR Lyrae in binary systems are not affected by Blazhko effect.
- Why?
 - Blazhko RR Lyrae are generally eliminated during the investigation.

How to detect binary systems

- Eclipses
- Radial velocity (spectrometry)
- Light-travel time effect on the orbit -> O-C
 - O-C of the maxima
 - needs a large number of recorded data
 - O-C Hertzsprung's method
 - derive O-C from a light-curve template
 - not applicable to Blazhko star

O - C Hertzsprung's method

- derive a Light Curve template
- each data point has an (O-C)
- applicable to sparse
 Light Curve sampling
- but not for Blazhko RR Lyrae

Orbital parameter estimation

light-travel time equation

maxima are seen as ticks of a clock moving around the mass center

$$\tau = \frac{(a_{RRL} \sin i)}{c} \frac{(1 - e^2)}{(1 + e \cos v)} \sin (v + \omega) + \tau_0$$

τ: light-travel time

arrl: semi-major axis

i: orbit inclination

e: orbit eccentricity

v: true anomaly

ω: periastron longitude

• minimize residuals $r = (O-C) - \tau$

with Levenberg-Marquart algorithm (improved Gauss-Newton method)

 Blazhko effect seen as a noise added to light-travel time.

Orbital parameter estimation

$$a_{RRL} \sin i / c = 0.00893 d (1.55 AU)$$
 $P_{orb} = 1,676 d = 4.59 \text{ years}$
 $e = 0.22$
 $\omega = -0.978 \text{ rad}$
 $T_{peri} = 2455006 \text{ HJD}$
 $\tau_0 = 0.0117 d$

Radial velocity 10 km/s

WASP data

Secondary star mass estimation

Assuming 0.7 M⊙ for the RR Lyrae

Table 7.	Secondary	mass	and	semi-major	axes	of the	two	stars	for	different
orbital in	nclinations.									

Orbital Inclination	Secondary Mass	$a_{_{RRL}}$	a_{s}	
(degrees)	(M_{\odot})	(AU)	(AU)	
90	0.70	1.55	1.54	
80	0.72	1.57	1.53	
70	0.77	1.65	1.50	
60	0.87	1.78	1.44	
50	1.07	2.02	1.32	
40	1.45	2.40	1.16	
30	2.36	3.09	0.92	
20	5.56	4.52	0.57	
10	34.84	8.90	0.18	

derived from Kepler's third law

 Secondary star probably more evolved as its mass is higher than RR Lyrae mass

(both stars formed at same epoch and have same metallicity)

Conclusions

- To confirm TU Com binary system, spectroscopic radial velocity measurement would be required.
- A challenge as the radial velocity is low (10km/s) and impacted by pulsation and motion of the atmospheric layers of the RR Lyrae.
- If confirmed, TU Com will be the first detected RR Lyrae with Blazhko effect in a binary system

References

- de Ponthière, P. et al, 2016 TU Comae Berenices: Blazhko RR Lyrae Star in a Potential Binary System J. Amer. Assoc. Var. Star Obs, 44, 18
- Hajdu, G. et al, 2015 New RR Lyrae variables in binary systems.
 MNRAS 449, L113
- Hilditch, R. W. 2001, An Introduction to Close Binary Stars, Cambridge Univ. Press, Cambridge.