# Spaltlose Spektroskopie mit Transmissionsgittern



Uwe Zurmühl, Giesen (bei Hildesheim)

- I) Vom Star Analyser zum Grism Spektroskopie im konvergenten Strahlengang
- II) Hochauflösende Spektroskopie mit dem Objektivgitter
- III) Spektrophotometrie



# Eigene Erfahrungen und Hintergrund



- Studium der Atom- und Kernphysik & Astronomie in Göttingen
- > Forschung mit Gamma-Strahlung im MeV-Bereich in Göttingen, Grenoble und am MPI Mainz
- Interesse an Astronomie "seit früher Jugend", seit ca. 30 Jahren wieder aktiver Amateurastronom
- ➢ Ab 2015 Beginn spektroskopischer Aktivitäten (→ 31. ATT Essen: Stände von Ernst Pollman und Shelyak)
- Kurz darauf erste Versuche mit "Star Analyser 100" und 200
- > Erkenntnis: Die meisten Berichte zur Verwendung des SA100 / SA200 sind fragwürdig bis irreführend...
- Daher: Eigener Weg zur Optimierung der Auflösung
- Einsatz weiterer Gitter von Thorlabs/Edmund Optics mit höherer Dispersion (300 l/mm und mehr)
- > Parallel dazu: Tests als Objektivgitter, zunächst die 1" Gitter, dann 5cm x 5cm Gitter von Thorlabs
- > Für hochauflösende Spektroskopie derzeit hauptsächlich ZEISS-Transmissionsgitter (6,5cm x 6,5 cm) verwendet

# **Sternwarte Giesen**

N 52° 11,96' O 9° 54,22'





# Spaltlose Spektroskopie - Allgemeines

Der Spalt wird quasi ersetzt durch das Bild des Objektes, daraus folgt:

- Im Allgemeinen nur "punktförmige" Ziele sinnvoll
- > Jede Unschärfe (Optik, Luftunruhe, Nachführung,...) wirkt sich auf die Auflösung aus
- Keine feste Beziehung Sensor-Position <-> Wellenlänge, d.h. individuelle Eichung jedes Spektrums nötig
- > Absolute Wellenlängeneichung nur eingeschränkt möglich
- Untergrund (Atmosphäre, andere Sterne) prinzipiell höher als bei Verwendung eines Spalts

Vorteile gegenüber Spaltspektrographen:

- Einfacher, kostengünstiger Aufbau und unproblematischer Einsatz (z.B. Autoguiding oft verzichtbar)
- Mehrere Objekte können auf einen Schlag gemessen werden (-> Plejaden)
- Spektrophotometrie (relativ) einfach möglich

# I) Vom Star Analyser zum Grism – Spektroskopie im konvergenten Strahlengang





# Prinzipieller Aufbau für konvergenten Strahlengang (ohne Prismen)



Beleuchteter Teil des Gitters: $SA_{illum} = d * D/F = d/N$ Abstand für volle Ausleuchtung: $d_{ausgel} = 24 mm * N$ 

➔ "Geknickter Strahlengang"

Auflösung verschlechtert durch "Spektrale Koma":

$$\Delta\lambda_{Coma} = \varepsilon \frac{3\lambda}{8N^2} \qquad \varepsilon \approx 0.5$$

N = F/D Blende (= 1/Öffnungsverhältnis)

Beispiel: N = 8,  $\lambda$  = 6563 Å  $\rightarrow \Delta \lambda_{Coma} \approx 19$  Å

### Strahlengang beim Transmissionsgitter



#### Beispiel: Arcturus mit Star Analyser 100 (Abstand SA100 <-> Sensor: 140 mm)

#### "2D-Spektrum"

Optik: ED72/432 mm

Kamera: ATIK 460EXm (12,5x10mm, 4,54µm Pixel)

Belichtung: 16 \* 0,5s



"1D-Spektrum"

#### Wellenlängen-Kalibrierung am Beispiel von "RSpec"

RSpec - E:\AstroData\CCD\_ATIK\_460EXm\Raw\2023\Gi230421\_SA100\_ED72\_432\Arcturus\_AT4B1No\_SA100\_Gi230421\_ED72\_432\_B1\_H49\_16m500ms\_AAM.fit



\_

σ×

### Beispiel: Markarian 509 Quasar (Seyfert I AGN, $z = 0.035 \leftrightarrow v_{Rad} = 10500 \text{ km/s}$ )



Optik: Meade 10" SCT mit SA100 **vor** 0,6x Intes Fokalreduzierer (f = 1600 mm) Kamera: ATIK One (12,5x10mm, 4,54µm Pixel) Belichtung: Insgesamt 2580 s

# Optimierung der Auflösung: Gitter und Einzelprisma ("Grism")



| Beispiele:                                     | Prisma & SA100 | Prisma & SA200 |
|------------------------------------------------|----------------|----------------|
| Ablenkungswinkel Prisma $\delta$ (H $\gamma$ ) | 2,0°           | 4,0°           |
| Keilwinkel Prisma (BK7)                        | 3,8°           | 7,6°           |
| $\lambda_{corr}$ [Å]                           | 5625           | 5625           |

Vollständige Korrektur der spektralen Koma für eine bestimmte Wellenlänge:

$$\lambda_{corr} = \gamma \cdot g \cdot \frac{N^2 - 1}{N}$$
 (für 1. Ordnung)

Restliche spektrale Koma:

$$\Delta \lambda_{Coma} = \varepsilon \cdot \frac{3 |\lambda - \lambda_{Corr}|}{8N^2}$$

(nach D. J. Schroeder, "Astronomical Optics", 2. Aufl., S. 403)

#### "Schönheitsfehler:"

- Astigmatismus (Verbreiterung des Spektralstreifens)
- Nichtlinearität des Ablenkungswinkels vergrößert
- 0. Ordnung nicht mehr gut zu verwenden

#### SA100 ohne Prisma





Alf Boo (Arcturus) K1.5III 21.04.2023 SA100 ED72 f=432mm ATIK 460EXm 16\*500ms - Response Not Corrected



#### SA100 mit 2° Prisma





Alf Boo (Arcturus) K1.5III 21.04.2023 SA100 ED72 f=432mm ATIK 460EXm 20\*1s - Response Not Corrected



# "Finale Optimierung:" 2 Prismen sowie Abstimmung Optik & Sensorabstand



*Beispiel:* ED102/714, SA200, d = 150 mm,  $\Delta S^{"}$  = 4" →  $\Delta S_{A}^{"}$  = 4,6 Å

### Weitgehende Korrektur von Koma und Astigmatismus!

Absolute Auflösung in Å ist nun gegeben durch:

$$\Delta S_{\rm A} = 48.48 \; \Delta S^{\prime\prime} \frac{F_{mm}}{d_{mm} \cdot L_{mm}}$$

 $F_{mm}$ : Brennweite in mm  $d_{mm}$ : Abstand Gitter <-> Sensor in mm  $L_{mm}$ : Gitter Linien / mm

 $\Delta S''$ : Abbildung des Sterns in Bogensekunden

$$\left(\Delta S^{\prime\prime}\right)^{2}_{total} = \left(\Delta S^{\prime\prime}\right)^{2}_{Airy} + \left(\Delta S^{\prime\prime}\right)^{2}_{Seeing} + \left(\Delta S^{\prime\prime}\right)^{2}_{Guiding} + \dots$$

# "Finale Optimierung:" 2 Prismen und Abstimmung Optik / Sensorabstand

Die gesamte Strategie zur Optimierung kann hieraus abgeleitet werden:

- ✓ Brennweite möglichst klein
- ✓ Abstand Gitter<-> Sensor möglichst groß
- ✓ (evtl.) Gitter höherer Dispersion verwenden
- ✓ Sternabbild möglichst klein (große Apertur, APO etc.)

Allerdings weitere Randbedingungen zu beachten:

- ✓ Kein "Undersampling" (Pixelmaßstab angemessen)
- ✓ Abzudeckender Spektralbereich etc.

*Beispiel:* ED102/714, SA200, d = 150 mm,  $\Delta S^{"}$  = 4" →  $\Delta S_{A}^{"}$  = 4,6 Å

# Weitgehende Korrektur der Koma und des Astigmatismus!



# Verwendete Gitter-Prismen Kombinationen (Grisms)

### a) Für den Einsatz an Refraktoren:

- SA200 mit 2 \* 2° Prismen (Gitter Ø 23,5 mm)
- "BA207" -- "" -- (altes Baader-Gitter Ø 26 mm, 207 L/mm)

### b) Bei Schmidt-Cassegrain Optiken zusätzlich:

- SA100 (ohne Prismen, Ø 23,5 mm)
- "EA300" 2 \* 4° Prismen (Edmund Optics-Gitter 1" 

  300 L/mm)
- "TA300" 2 \* 4° Prismen (Thorlabs-Gitter 1" 

  300 L/mm)
- "TA300i" 2 \* 6° Prismen (dito, für IR-Bereich)
- "TA600" 2 \* 10° Prismen
- ("TA830" 2 \* 12° (2 \* 14°) Prismen)







# "Visuelle" Thorlabs-Gitter: Effizienzkurven



Quelle: Thorlabs Inc.

# Verwendete Optiken für den konvergenten Strahlengang

| Refraktor              | F [mm] | <b>F / D</b> | Bemerkung                                                       |
|------------------------|--------|--------------|-----------------------------------------------------------------|
| TS ED 60               | 330    | 5,5          | Sehr kompakt, aber Undersampling mit vorhandenen Sensoren       |
| TS Photoline ED72      | 432    | 6,0          | Gute Abbildung, leichtes Undersampling, Schwächen im UV         |
| Skywatcher Eqinox ED80 | 500    | 6,25         | Sehr gute Abbildung, Schwächen im UV                            |
| TS Photoline ED102     | 712    | 7,0          | "Perfekte Abbildung" über gesamten Bereich UV-IR                |
| Skywatcher ED 120      | 900    | 7,5          | Sehr gute Abbildung (bis auf UV), benutzt für höhere Dispersion |
| Skywatcher FH 100      | 500    | 5,0          | Gute Abbildung, aber Wellenlängenbereich eingeschränkt          |

| Schmidt-Cassegrain | F <sub>nom</sub> [mm] | F <sub>nom</sub> / D | F <sub>reduziert</sub> [mm] | Bemerkung                             |
|--------------------|-----------------------|----------------------|-----------------------------|---------------------------------------|
| Celestron C8       | 2032                  | 10                   | ca. 1100-1200               | Einsatz mit 0,6x bzw 0,63x Reduzierer |
| Meade LX200 10"    | 2540                  | 10                   | ca. 1300-1600               | dito / EMC – Vergütung                |
| Celestron C14      | 3910                  | 11                   | ca. 2000-2300               | dito / XLT – Vergütung                |

# Verwendete Kameras

| Kamera      | Sensor         | B x H [mm]  | Pixelzahl   | Pixel<br>[µm] | Bemerkung                                              |
|-------------|----------------|-------------|-------------|---------------|--------------------------------------------------------|
| Meade DSI3  | Sony IXC285AL  | 8,8 x 6,6   | 1360 x 1024 | 6,45          | Ohne Kühlung                                           |
| ZWO ASI     | Sony IMX178    | 7,4 x 5,0   | 3096 x 2080 | 2,4           | CMOS (hochfrequente "Fringes")                         |
| ATIK 460EXm | Sony IXC694    | 12,5 x 10   | 2749 x 2199 | 4,54          | Sehr empfindlich und rauscharm                         |
| ATIK One    | Sony IXC694    | 12,5 x 10   | 2749 x 2199 | 4,54          | Wie 460EXm, mit Filterrad und stärkerer Kühlung        |
| ATIK 383L+  | Kodak KAF-8300 | 18,0 x 13,6 | 3354 x 2529 | 5,4           | Relativ starker Untergrund ("Hot Pixel" und "Cosmics") |

# Adaption Kamera + Grism an jeweilige Optik



Einsatz mit Reduzierer (an SCTs)

# Typische "Grism" - Konfigurationen

### a) Refraktor ED102/714 f = 714 mm

| Gitter<br>(L/mm) | Prismen<br>(Ablenkungs-<br>winkel) | Keine<br>Ablenkung bei | Rest-Astigmatismus<br>(Höhe Spektral-<br>streifen, FWTM) | Distanz<br>Gitter <-><br>Sensor | Dispersion<br>(für ATIK One,<br>4.54 µm Pixel) | λ- Bereich<br>(für ATIK One) | Typische<br>Auflösung<br>(3" Seeing) |
|------------------|------------------------------------|------------------------|----------------------------------------------------------|---------------------------------|------------------------------------------------|------------------------------|--------------------------------------|
| 200              | 2° + 2°                            | 3491 Å                 | ≈ 14"                                                    | 150 mm                          | 1,45 Å/pix                                     | 3980 Å                       | 4 Å                                  |

#### b) Schmidt-Cassegrain Meade 10" f/10, mit Reduzierer (hier: f = 1300 mm)

| 200 | 2° + 2°   | 3491 Å | 15" | (194 mm) | 1.28 Å/pix | 3520 Å | 6 Å   |
|-----|-----------|--------|-----|----------|------------|--------|-------|
| 300 | 4° + 4°   | 4654 Å | 18" | (175 mm) | 1.01 Å/pix | 2775 Å | 4,5 Å |
| 600 | 10° + 10° | 5818 Å | 16" | (180 mm) | 0.48 Å/pix | 1320 Å | 2,5 Å |

- 200er und 300er Gitter gut geeignet für Übersichtsspektren (mit ATIK 460EX bzw. 383L+)
- Nachteil: Durch zu klein dimensionierte Gitter und Prismen z.T. sehr starke Vignettierung mit Reduzierer
- Vorteil: Unterdrückung der 0. Ordnungen mit zunehmender Dispersion





Konfiguration: SA200, Prismen: 2\*2° ED102 f = 712 mm d<sub>Gitter-Sensor</sub> : 145 mm ATIK One Dispersion: 1,51 Å/pix Abs. Aufl.:  $\Delta \lambda \approx 4,5$  Å

*Objekt:* Deneb (α Cyg) Spektraltyp: A2Ia m<sub>vis</sub>: 1,25 mag

#### Alf Boo (Arcturus) K1.5III 09.04.2023 Grism300 C14 f=2270mm ATIK 383L+ 11\*500ms - Response Corrected



Konfiguration: EA300, Prismen:  $2^*4^\circ$ C14 f = 2270 mm (!) ATIK 383L+ Dispersion: 1,22 Å/pix Abs. Aufl.:  $\Delta \lambda \approx 5$  Å

*Objekt:* Arktur (α Boo) Spektraltyp: K1.5III m<sub>vis</sub>: -0,05 mag

#### Alf Ori (Betelgeuse) M1-M2Ia-ab 05.11.2021 Grism207 ED102 f=714mm ATIK One 31\*1s - Absolute Flux



Konfiguration: BA207, Prismen: 2\*2° ED102 f = 712 mm d<sub>Gitter-Sensor</sub> : 151 mm ATIK One Dispersion: 1,42 Å/pix Abs. Aufl.:  $\Delta \lambda \approx 4$  Å

Objekt:

Beteigeuze (α Ori) Spektraltyp: M1-M2Ia-ab m<sub>vis</sub>: 0,42 mag (var)

# Kalibrierung: Wellenlängeneichung und Ansprachefunktion

- Zuordnung Spaltenwerte (x-Koordinaten) zu bekannten Wellenlängen
  - o anhand stellarer Linie (relativ)
  - anhand atmosphärischer Linien (absolut)
- Ermittlung Ansprachekurve durch Messung eines Referenzsterns in gleicher Höhe
  - Referenzstern mit bekanntem Spektraltyp (Spektralbibliotheken: "Miles", "Pickles",..)
  - Anwendung dieser Ansprachekurve auf Zielsternspektrum
  - Für "photometrische" Nächte und absolute Ansprachekurve ("Calspec"-Sterne) auch absolute
     Flusskalibrierung der Spektren möglich, ansonsten nur relative Intensitäten



Konfiguration: BA207, Prismen: 2\*2° ED102 f = 712 mm ( $D_{eff}$ : 88 mm) d<sub>Gitter-Sensor</sub> : 203 mm ATIK 383L+ Dispersion: 1,30 Å/pix Abs. Aufl.:  $\Delta \lambda \approx 5$  Å

Objekt:

R Vir (Mira-Variable) Spektraltyp: ca. M3.5III (M3.5-7e) m<sub>vis</sub>: 6,8 mag (6 - 12)

# Nova Cas 2021 (V1405 Cas), entdeckt am 18.3.2021



# Nova Cas 2021 (V1405 Cas) Entwicklung Fell-Linien



Konfiguration: EA300, Prismen: 2\*4° 10" SCT f  $\approx$  1355 mm ATIK 383L+ Dispersion:  $\approx$  1,3 Å/pix Abs. Aufl.:  $\Delta\lambda \approx 5$  Å

# Nova Cas 2021 (V1405 Cas) am 8.7.2022



# Nova Cas 2021 (V1405 Cas) am 8.7.2022



Doppler-Effekt (nichtrelativistisch):

$$v_{radial} = (\Delta \lambda / \lambda) * c$$

➔ Geschwindigkeit der Explosionswolke ca. 1800 km/s

# Literaturhinweise (Gitter im konvergenten Strahlengang)

- (1) Doug West, *Resolution Calculation for a Slitless Spectrograph* http://users.erols.com/njastro/faas/articles/west01.htm
- (2) Christian Buil, A low cost spectrograph, diffractive grating in the converging optical beam http://www.astrosurf.com/buil/us/spe1/spectro1.htm
- (3) Erik Wischnewski, *Spektrale Auflösung mit dem StarAnalyser* http://www.astronomie-buch.de/Astronomical\_Bulletin\_Nr\_16.pdf , 2014
- (4) Uwe Zurmühl, Spektrum Nr. 51, 2/2016, *Transmission Gratings Resolution Optimization for Convergent Beam Setups* http://spektroskopie.fg-vds.de/pdf/Spektrum51.pdf
- (5) Robin Leadbeater Homepage http://www.threehillsobservatory.co.uk/astro/astro.htm
- (6) Paton Hawksley Education Ltd. https://www.patonhawksley.com/astronomy-1
- (7) Daniel J. Schroeder, "Astronomical Optics", 2<sup>nd</sup> edition, Academic Press 2000

# II) Hochauflösende Spektroskopie mit dem Objektivgitter



## Objektivgitterspektroskopie

Selten benutzte Technik, nur wenige Beispiele für professionellen Einsatz:

- Drahtgitter vor Apertur eines 71cm-Reflektors (M. Wolf 1921), grobe Spektralklassifikation
- Transmissionsgitter-Mosaik vor 18" Schmidt-Teleskop (F. Zwicky, 1940)

Im Amateurbereich:

- Gitter aus Angelschnüren vor Celestron 8 (M. Köbberling, SuW 6/1998)
- Kleine Transmissionsgitter (Foliengitter, SA100 etc.) vor Objektiv- / Teleskop-Apertur (z.B. für Meteoritenspektroskopie)

### → Viele Gemeinsamkeiten mit Objektiv*prismen*-Spektroskopie

# Strahlengang für Objektivgitter-Spektroskopie (in 1. Ordnung)

#### Hier: Gitter senkrecht zur optischen Achse



Unterschiede zum konvergenten Strahlengang:

- Parallel einfallende Strahlen
- Wesentlich höhere Dispersion / Auflösung
- Geringerer Wellenlängenbereich
- Großer Einfallswinkel zur optischen Achse
- Apertur begrenzt durch Gittergröße
- Höhere Anforderungen an optische Qualität des Gitters

| Gitter                             | 200 L/mm | 300 L/mm | 600 L/mm | 830 L/mm | 1200 L/mm |
|------------------------------------|----------|----------|----------|----------|-----------|
| Einfallswinkel $\alpha$ bei 5500 Å | 6,32°    | 9,50°    | 19,30°   | 27,16°   | 41,30°    |

# Auflösung für Objektivgitter (in 1. Ordnung)

Absolute Auflösung in Å:

$$\Delta S_{\text{Å}} = 48,48 \cdot \frac{\Delta S_{y}^{"}}{L_{mm}}$$

*L<sub>mm</sub>*: Gitter Linien / mm

 $\Delta S_{y}^{"}: \text{ Unschärfe der Abbildung in Bogensekunden (in Dispersionsrichtung)}$  $\left(\Delta S_{y}^{"}\right)^{2} = \left(\Delta S_{y}^{"}\right)^{2}_{Beugung} + \left(\Delta S_{y}^{"}\right)^{2}_{Seeing} + \left(\Delta S_{y}^{"}\right)^{2}_{Guiding} + \dots$ 

**Relative Auflösung:**  $R = \lambda / \Delta \lambda = \lambda_{A} / \Delta S_{A}$ 

#### → Auflösung hängt nur ab von Abbildungsschärfe und Gitter!

Rechenbeispiele für ein Seeing von 3" und Beugung an Apertur (bei 5500 Å):

| $\Delta S_{ m \AA}$ für Gitter | 100 L/mm | 200 L/mm | 300 L/mm | 325,5 L/mm | 600 L/mm | 830 L/mm | 1200 L/mm |
|--------------------------------|----------|----------|----------|------------|----------|----------|-----------|
| ø 25 mm                        | 3,04 Å   | 1,52 Å   | 0,89 Å   |            |          |          |           |
| □ 50 mm                        |          | 0,92 Å   | 0,61 Å   |            | 0,31 Å   | 0,23 Å   | 0,17 Å    |
| □ 65 mm                        |          |          | 0,56 Å   | 0,52 Å     | 0,29 Å   |          |           |

### Verwendete Objektivgitter

#### I) Abmessungen: 5 cm x 5 cm



Hersteller: Paton Hawksley (200 L/mm) Thorlabs (restliche)

Strichzahl: 200 L/mm 300 L/mm 600 L/mm 830 L/mm 1200 L/mm

### II) Abmessungen: 6,5 cm x 6,5 cm (ca.)



Hersteller: ZEISS

Strichzahl: 300 L/mm 325,5 L/mm 600 L/mm

# ZEISS Transmissionsgitter mit 325,5 Linien/mm

- Träger 70 x 70 x 12 mm<sup>3</sup>
- Aktive Fläche ca. 67 mm x 66 mm



Fassung für Einsatz am 4" ED Refraktor (3D-Druck)



# Das Problem: Kontaminierungen durch 0. Ordnungen ...



# ... und seine Lösung: Der "Beam-Blocker"



"Standardaufbau":
ED102/712
ZEISS-Objektivgitter & "Blocker"
Kamera: ATIK One
Montierung: Skywatcher EQ8

# Deneb ( $\alpha$ Cyg) ohne und mit Blocker



## Einsatzbereich Objektivgitterspektroskopie

- Sterne heller als ca. 8 mag
- Hohe Auflösung (ca. R = 5000 .... 30000)
- Linienidentifikation (gute Trennung von benachbarten Linien)
- Analyse von Linienprofilen
- Bestimmung von Radialgeschwindigkeiten (aus Verschiebung gegenüber Laborwellenlängen)
- Spektralklassen: Detaillierte Klassifizierung

# Deneb (Spektralklasse: A2Ia): "P-Cygni" Linienprofil bei Hα



BAV Beobachtertreffen Hartha 10. Juni 2023

# Überriese mit starken Sternwinden: Rigel (β Ori, Spektralklasse: B8lae)



# Beispiel: Menkalinan (β Aur, Spektralklasse: A1IV-Vp) Binärsystem, Algol-Typ (SB2, Periode: 3,96 d)





### Beispiel für höchste Auflösung: Arktur (α Boo, K1.5III), Bereich des "Mg-Tripletts"



# Anwendung: Wilson-Bappu Effekt

➔ Absolute Helligkeit von Sternen der Spektralklasse G und kühler lässt sich bestimmen aus zentraler Emission im Kern von Call K Linie



### Linienprofile bei Mira: UV-Bereich



Gitter: ZEISS 600 L/mm 68 mm x 52 mm

Optik: ED102/714 @ f = 622 mm

Auflösung:  $\Delta \lambda \approx 0,40 \text{ Å}$ R  $\approx 10000 \text{ (bei } 4000 \text{ Å)}$ 

## Linienprofile bei Mira: Bereich um Hß



U. Zurmühl

## Linienprofile bei Mira: Bereich um Ha

Omi Cet (Mira) M5-9IIIe+DA 04.12.2019 OG600Z ED102 f=622mm ATIK One 22\*60s - Response Not Corrected

![](_page_49_Figure_2.jpeg)

Gitter: ZEISS 600 L/mm 68 mm x 52 mm

Optik: ED102/714 @ f = 622 mm

Auflösung:  $\Delta \lambda \approx 0,40 \text{ Å}$ R  $\approx 16000 \text{ (bei } 6500 \text{ Å)}$ 

# Literaturhinweise (Objektivgitter)

- (1) M. Wolf, Versuche mit dem Objektivgitter, Astron. Nachrichten Bd. 213, Nr. 5092, S. 50 ff. (1921)
- (2) J. Strong and F. Zwicky, *Objective Transmission Gratings for Large Schmidt Telescopes*, Applied Optics, Vol. 5, No.5 (1969)
- (3) M. Köbberling, Sternspektren beobachten mit dem Eigenbau-Objektivgitter, SuW 6/1998, S. 537 ff.
- (4) M. Dubs, (2018): *Meteor Spectroscopy OHP2018*
- (5) E. Wischnewski, Astronomie in Theorie und Praxis, 8. Auflage 2018, S. 263 ff.
- (6) U. Zurmühl, *Objective Gratings for Amateurs*, SPEKTRUM 55 (2019) p. 14, <u>https://spektroskopie.vdsastro.de/files/pdfs/Spektrum55.pdf</u>
- U. Zurmühl, Spectroscopy With Medium-Sized Objective Gratings, BAV Magazine Spectroscopy 10, p. 25 (2021), <u>https://www.bav-astro.eu/images/BAVMS\_10-2021.pdf</u>

# III) Spektrophotometrie

![](_page_51_Picture_1.jpeg)

![](_page_51_Figure_2.jpeg)

# Das Problem: Verfälschung des originalen Spektrums auf seinem Weg von der Quelle zu Detektor

![](_page_52_Figure_1.jpeg)

# Szintillation: Genügend lange Messzeiten bzw. Mittelung notwendig!

![](_page_53_Figure_1.jpeg)

Veränderung der Strahlung / des Spektrums auf dem Weg von der Quelle zum Sensor (bei Vernachlässigung der interstellaren Absorption)

![](_page_54_Figure_1.jpeg)

- Rayleigh-Streuung: Konstant für eine gegebene "Luftmasse", recht genau zu berechnen
- Aerosole: Transmission variabel in Form und Größe, abhängig von Staubpartikeln etc., Modellberechnung
- Ozon: Variabel in der Größe des Effektes, Wellenlängenabhängigkeit aber gut bekannt (Tabellen)
- Hier nicht berücksichtigt: O<sub>2</sub> und Wasserdampf!

# Messung und Korrektur der atmosphärischen Transmission

![](_page_55_Figure_1.jpeg)

# Messung und Korrektur der atmosphärischen Transmission

![](_page_56_Figure_1.jpeg)

Korrekturkurven für alle am 5.4.2023 gemessenen Sterne

### Beispiel: Mira-Variable R Gem

R Gem S3.5-6.5/6e 05.04.2023 LX200 10" f=1522mm ATIK 460EXm 9\*60s - Absolute Flux

![](_page_57_Figure_2.jpeg)

## Beispiel: Mira-Variable R Gem - Photometrie

![](_page_58_Figure_1.jpeg)

## R Gem - Vergleich mit AAVSO-Daten

Eigener V – Wert vom 5.4.2023

![](_page_59_Figure_2.jpeg)

# Supernova SN2023ixf in M101 (Entdeckt: 19.5.2023, Typ: SN IIn)

![](_page_60_Figure_1.jpeg)

28.5.2023 14" Celestron @ f = 2270mm Grism 300L/mm 2\*4° ATIK 383L+ 25 \* 120 s

## Supernova SN2023ixf - Photometrie

SN2023ixf M101 28.05.2023 Grism300 C14 f=2270mm ATIK 383L+ 25\*120s - Absolute Flux

![](_page_61_Figure_2.jpeg)

## Supernova SN2023ixf – Benachbarte HII-Region NGC 5461

NGC5461 M101 H II Region 28.05.2023 Grism300 C14 f=2270mm ATIK 383L+ 25\*120s - Absolute Flux

![](_page_62_Figure_2.jpeg)

# Literaturhinweise (Spektrophotometrie, Transmission Atmosphäre)

- (1) J. Wempe, *Die Wellenlängenabhängigkeit der atmosphärischen Extinktion*, Mitteilungen des Astrophysikalischen Observatoriums Potsdam Nr. 21, 1944
- (2) D.S. Hayes and D.W. Latham, A REDISCUSSION OF THE ATMOSPHERIC EXTINCTION AND THE ABSOLUTE SPECTRAL-ENERGY DISTRIBUTION OF VEGA, 1975, ApJ 197, 593
- (3) Chr. Buil, speziell: http://www.astrosurf.com/buil/calibration2/absolute\_calibration\_en.htm

# Vielen Dank für Ihre

# Aufmerksamkeit!

![](_page_64_Picture_2.jpeg)

![](_page_64_Picture_3.jpeg)